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Introduction

Fire is an ever-present risk in the semi-arid environments 
of the Mediterranean Basin. During 1994, 17,156 fires in 
Spain, burnt over 405,000 hectares of forest, woodland and 
grazing land, damaged farm and holiday buildings, and caused 
the deaths of 22 people (Velez 1995). Although an extreme 
year, this example illustrates the importance of understanding 
the risk that wildfire hazard imposes for both management 
and mitigation purposes. In this sense, a ‘hazard’ is a potential 
threat to humans or their interests and ‘risk’ is the likelihood of 
hazard occurrence (Smith 1992). As with many other natural 
hazards, understanding how wildfire risk will change in the 
future under changing environmental conditions will allow 
this risk to be more effectively managed.

Wildfires, and the subsequent patterns of vegetation 
regeneration that in turn influence future wildfire activity, 
typify the feedbacks between ecological pattern and process 
emphasised by landscape ecologists (Turner 1989). When 
humans are present in a landscape, as they are ubiquitously 
in the Mediterranean Basin, they become part of this pattern-
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as the one presented here could be used in other landscapes to quickly assess wildfire risk and its change due to environmental change.

process feedback; human patterns of land-use influence where 
wildfires occur and how they spread. In turn, the footprints 
of these fires influence patterns of vegetation and its regen-
eration, which in turn influences human land-use, and so on. 
Attempts to assess the risk of wildfire burning one particular 
point in a landscape must, therefore, be spatial in nature. For 
example, the evaluation of the wildfire risk presented in a 
particular area demands the consideration of both the factors 
involved in the potential ignition of a fire in that area and the 
factors influencing the possibility of fire spreading into it from 
an adjacent area. These factors include the vegetation (fuel) 
available to burn, topography, human activities, and climatic 
conditions of both the area concerned and the landscape(s) 
surrounding it. Any changes in these environmental conditions 
are likely to lead to a change in wildfire risk. 

This paper uses a Geographic Information System (GIS) to 
examine how wildfire risk has changed in a region (described 
in more detail below) west of the city of Madrid, Spain. Po-
tential future changes in risk, in response to possible future 
changes in land-cover due to agricultural abandonment, are 
modelled. Building upon previous wildfire risk mapping re-
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search, a consideration of how spatial changes in vegetation 
structure in the region is incorporated, and changes in the 
spatial pattern of risk are examined. First, previous wildfire 
risk mapping studies using GIS are reviewed and the potential 
changes in landscape composition and configuration, and the 
impacts of these for wildfire risk, are examined for the study 
area. Next, the methods used to spatially model wildfire risk 
and future potential changes in land-cover are presented. The 
results from this modelling are then presented and analysed, 
focussing on the spatial aspects of wildfire risk, before the 
results are placed into the wider context of wildfire risk as-
sessment in the Mediterranean.

Mediterranean Wildfire Risk Assessment using GIS
Many wildfire risk mapping studies have used GIS to 

integrate several layers of spatial, wildfire-related data to 
derive maps of risk for their study areas (e.g. Chuvieco and 
Congalton 1989, Chuvieco and Salas 1996, Castro and Chu-
vieco 1998, Camia et al. 1999, Chuvieco et al. 1999). Table 
1 presents examples of the types of data that have been used 
in such studies in the Mediterranean. This approach has been 
the most frequent use of GIS in wildfire modelling studies 
(Perry 1998), and stems from the utility of GIS to represent, 
analyse, and manipulate spatial data. Further, these studies 
have predominantly used a qualitative-objective method, 
using variables concerning the condition of vegetation (fuel) 
available to burn and the presence of human activity. This 
method assesses risk by assigning specific values to combina-
tions of risk-related variables according to their (perceived) 
importance (Chuvieco et al. 1999).

Forestry managers in the Mediterranean frequently use this 
type of approach to assess wildfire risk on a daily or weekly 
basis. However, it seems that there has been no use of this type 
of wildfire risk modelling for forecasting how risk may change 
further into the future under different environmental condi-
tions in this region. For example, changes in land cover due 
to changes in land use, particularly agricultural change and 
abandonment often cited as occurring in the Mediterranean 
Basin (e.g. MacDonald et al. 2000), and climatic changes, 
will alter the environmental conditions influencing wildfire 
risk. Using GIS-based wildfire risk modelling techniques and 

projecting into the future for different environmental condi-
tions is one way we might quickly and conveniently assess 
how risk will change.

Langran (1992) suggested that the treatment of time would 
make GIS ‘complete’ and that without it GIS would remain a 
tool of “ad-hoc problem solving and demonstration projects” 
(Langran 1992, p.4). Further, Perry (1998) noted that the lack 
of temporality in contemporary GIS had until then prevented 
the explicit simulation of wildfire events within them, and in 
particular prevented adequate representation of the complexi-
ties of wildfire spread. In the time since there has been little 
advance in the capabilities of GIS to represent time or spatial 
change dynamically, although the topic has been increasingly 
discussed in the area (e.g. see the special edition of Cartog-
raphy and Geographic Information Systems, ‘Dealing with 
Time’; 1999, vol. 26, no. 2). GIS is currently used for inher-
ently static assessments (“snapshots”) of underlying processes 
when compared to dynamic, process-based wildfire models 
(e.g. Mouillot et al. 2001,  also see examples in Keane et al. 
2004). Thus, while this snapshot nature may be adequate for 
assessing wildfire ignition risk, which actually only occurs 
at one instant in time, it is rather inadequate for assessing 
the wildfire’s subsequent behaviour and spread. Substituting 
space for time may help to overcome this inadequacy. By 
considering the spatial structure of landscape vegetation (a 
wildfire’s fuel) improved representation of wildfire risk due 
to the behavioural aspects of the hazard might be achieved. 
Here, I incorporate a spatial index of contiguity into a previous 
GIS wildfire risk model to attempt to do this.

Recently there has been much debate concerning the ef-
fects that changes in current ecological disturbance regimes 
(notably wildfire and agricultural disturbance) might have on 
landscape heterogeneity in the Mediterranean. For example, 
Perez et al. (2003) found that increased fire occurrence, result-
ing from increases in fire risk due to abandonment, reduces 
heterogeneity by merging  smaller patches into larger burned 
areas. Theoretically, this homogenisation of land cover will 
further promote disturbances that spread (e.g. wildfire, see 
Turner et al. 1989, Turner and Dale 1991) leading to the oc-
currence of larger fires. However, Lloret et al. (2002) found 
that for their study area in north-east Spain, fires were more 
likely to occur in large homogenous areas of woodland and 
acted to actually increase heterogeneity (although it did not 
outweigh the homogeneity caused by agricultural abandon-
ment and corresponding coalescence of natural vegetation 
patches). These previous studies in the Mediterranean Basin 
are in general agreement that agricultural abandonment and 
corresponding increases in wildfire risk (and occurrence) has 
led to increased landscape homogeneity. With this in mind, 
incorporating some measure of spatial heterogeneity into a 
wildfire risk model should not only improve representation 
of the behavioural processes, but is also necessary for more 
accurate projection of future risk. 

Methods

Study Area
This study is focussed on the EU Special Protection Area 

number 56, ‘Encinares del río Alberche y Cofio’ (SPA 56), 
in central Spain (Figure 1). SPA 56 covers approximately 
830 km2 and is located 40 km to the southwest of the city 
of Madrid, within the Autonomous Community of Madrid. 
Lying on the southern slopes of the Sierra de Guadarrama 

Table 1. Data used in previous GIS wildfire risk studies. All studies of this nature 
in the Mediterranean have included human activity because of the high number 
of human-caused fires in this region.

Chuvieco 
and 

Congalton 
(1989)

Salas and 
Chuvieco 

(1994)

Chuvieco 
and Salas 

(1996)

Castro and 
Chuvieco 

(1998)

Data Resolution (m) 50 50 30 50

Vegetation (Fuel) yes yes yes yes

Elevation yes yes no no

Aspect yes yes yes yes

Slope Angle yes no yes yes

Temperature no no yes yes

Air Humidity no no yes no

Human Activity yes yes yes yes
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Figure 1. Study Area: SPA 56, ‘Encinares del río Alberche y Cofio’. SPA 56 covers approximately 830 km2 and is located 40 km to the southwest of the city of Madrid 
on the southern slopes of the Sierra de Guadarrama and Sierra de Gredos.

and Sierra de Gredos, altitudes range from 600 m ASL in 
the southeast to 1300 m in the northwest. SPA 56 contains 
a diverse range of habitats and environments including de-
ciduous woodlands, pine forests, holm oak (Quercus ilex) 
woodland, dehesa, meadows, grasslands, scrubland, rocky 
outcrops and crags, riparian habitats and others besides. 
Land use in the landscape is of a highly multifunctional 
nature, with areas of pasture, grazing, residential and human 
recreation often juxtaposed or occurring simultaneously. 
SPA 56 thus contains and exhibits many of the features and 
characteristics found widely across the Mediterranean Basin 
(e.g. Grove and Rackham 2001). 

Wildfire Risk Model Construction
The wildfire risk models examined here are based on the 

model presented by Salas and Chuvieco (1994). These authors 
constructed a wildfire risk model using a GIS for a study area 
located in the same region as SPA 56 (140km west of the city 
of Madrid) with a comparable altitudinal range (400 – 2,000m 
ASL), a very slightly cooler and wetter climate (a mean annual 
temperature range of 8° – 14°C and a mean rainfall range of 
500 – 1500 mm versus 10° – 16°C and 400 – 800mm in SPA 
56), and with similar vegetation (both landscapes dominated 
by Quercus, Pinus and Cistus species). A model using the 
same methods as Salas and Chuvieco (1994), both in terms 

of the types of data and variable weightings (see below), was 
used to create wildfire risk maps. Here, I also extend this 
model to consider the spatial configuration of land cover (as 
described below) and the model incorporating this spatial 
measure is compared to the method of Salas and Chuvieco 
(1994) for SPA 56. These wildfire risk assessment models 
are applied to both observed and predicted land cover maps 
with all other variables (elevation, location of roads/trails etc.) 
assumed to remain constant through time. Thus, although 
changes in other variables may occur, changes in wildfire 
risk through time are assessed with reference to changing 
vegetation conditions only.

As this study is based in large part on the model of Salas 
and Chuvieco (1994), the data chosen for inclusion in the 
wildfire risk models here were the same:

1. Land cover (vegetation)
2. DEM-derived data (aspect, illumination, elevation, 

slope)
3. Locations of firebreaks
4. Locations of roads and trails

Much of these data have been described previously by 
Romero-Calcerrada (2000) and Romero-Calcerrada and 
Perry (2004). Land cover data for 1984, 1991 and 1999 were 
derived from Landsat TM imagery and classified into 11 
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classes as shown in Figure 2 and Table 2. Romero-Calcerrada 
and Perry (2004) examined land cover changes occurring in 
SPA 56 between these years. Using landscape pattern metrics 
and transition matrices they found the configuration of land 
covers to be static through time, but that increasing rates of 
land cover change, possibly attributable to land abandonment 
(i.e. changes from pasture to scrubland), were evident in the 
landscape. They suggest that these changes might increase 
the flammability of the landscape as a whole (in turn leading 
to increased burned area, fire frequency and intensity); this 
contention is examined here in terms of wildfire risk.

Each variable is assigned a relative score and weight, 
according to its perceived influence on fire ignition and sub-
sequent spread. Ignition Risk (IR, Equation 1) and Behaviour 
Risk (BR1 and BR2, Equations 2 and 3 respectively) maps 
were created from:

 
 IR = 4H + 3V + 2I – E (1)
 BR1 = 5V + 4S + 3A - E - FB (2)
 BR2 = 5VC + 4S + 3A - E - FB (3)

where: A = Aspect
C = contiguity index
E = Elevation

FB = fire break
H = human presence (i.e. within 30m of a road/trails)
I = Illumination
S = Slope
V = vegetation 

Vegetation flammability and fuel model scores (from the 
vegetation maps used here) were derived with reference to 
the system used by Salas and Chuvieco (1994, Table II). The 
vegetation (fuel) layer is generally considered one of the most 

Figure 2. Land cover maps for 1984, 1991, 1999 and 2014 (predicted). Increases in scrubland commensurate with decreases in pasture land are observed for 1984-1999. 
The increases in flammability and homogenisation of the landscape associated with these land cover changes are likely to increase wildfire risk.

Table 2. Vegetation classes and scores. The vegetation classes and risk scores used 
were derived from the method used by Salas and Chuvieco (1994). High scores 
indicate a greater relative contribution to wildfire risk compared to lower values. 
For example, Pine is perceived to be the land cover at greatest risk of burning and 
Water/Quarry, Urban and Burnt at least risk of burning.

Vegetation Ignition Risk Score Behaviour Risk Score

Pine 20 20

Mixed Forest (Pine and Oak) 16 18

Scrubland 16 18

Holm Oak 14 15

Holm Oak with Pasture 10 12

Deciduous Trees 10 12

Cropland 7 10

Pasture 5 5

Water/Quarry/Urban/Burnt 0 0

important in wildfire risk modelling (Chuvieco and Congalton 
1989, Keane et al. 2001, Viegas et al. 2001), with many fuel 
maps and classifications constructed to classify vegetation 
according to its propensity to burn (e.g. Dimitrakopoulos and 
Mateeva 1998, Nunez-Regueira et al. 2000, Dimitrakopoulos 
and Panov 2001, Sandberg et al. 2001). Vegetation is deemed 
the primary factor in determining the BR here, influencing fire 
intensity and thus propensity to spread. Vegetation is second 
only to human presence (proximity to roads/trails) for IR, and 
weighted accordingly. 

The presence of humans is deemed most important regard-
ing IR. Salas and Chuvieco (1994) claim clear evidence for 
human influence is shown in their analysis of Spanish fire 
reports between 1968 and 1988. This shows that most fires 
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were started at weekends and during summer holidays, and 
near roads and trails. The summer holidays are the hottest and 
driest time of the year, with vegetation at its driest and most 
people using the landscape for recreation, and thus would 
expect to experience most fires. Similar analyses by Chuvieco 
and Salas (1996) and Vazquez and Moreno (1998) also found 
that most fires were started near roads and trails, although 
both used shorter-term data sets. Therefore in the model here, 
roads/trails, and areas within 30m, possess greater IR than 
the rest of the landscape. A similar buffer around road/trails 
to represent IR due to human activity has also been used in 
other studies (Chuvieco and Congalton 1989, Chuvieco and 
Salas 1996, Castro and Chuvieco 1998).

The illumination layer is used to represent spatial dif-
ferences in mean air temperature and soil moisture across 
the landscape. In this case, increased illumination indicates 
increased air temperatures and lower soil moisture. This in 
turn reduces vegetation moisture, increasing wildfire risk 
(e.g. see Nunez-Regueira et al. 2000). The aspect layer is 
incorporated because of its influence on wind conditions, 
notably air moisture (Salas and Chuvieco 1994). Elevation 
and fire breaks were included in the BR assessment, acting 
to inhibit wildfire spread. All scores for these layers are as in 
Salas and Chuvieco (1994).

As outlined above, incorporating the spatial landscape 
structure in a GIS model of wildfire risk seems important to 
better represent the behavioural aspects of wildfire risk for 
both current and future landscapes. A spatially disaggregated 
index is required to represent landscape structure. At the 
patch-level the contiguity index is a measure of the spatial 
connectedness of cells and is calculated (using ‘Fragstats’, 
McGarigal and Marks 1995) as:

(4)

where: c
ir
 = contiguity value for pixel r in patch i 

v = sum of the contiguity values in a 3-by-3 cell template 

a
i
 = area of patch i (number of pixels)

The index is calculated for each patch in the landscape, 
and the value applied to each pixel comprising that patch.  
Thus, large, contiguous patches have larger contiguity index 
values. In the context of wildfire risk, a pixel with a larger 
contiguity index will thus be at greater risk of being burned 
as fire will spread more easily through the patch into it. This 
model incorporating contiguity into the model of Salas and 
Chuvieco (1994), will be referred to as CONMOD (CONtiguity 
MODel), and the model not including it as SACMOD (Salas And 
Chuvieco MODel). Contiguity is incorporated as a multiplier 
to the vegetation score in CONMOD (see Equation 3 above).

Final wildfire risk values for the two models are found by 
the combination of BR and IR maps:

 SACMOD risk = BR1 + IR (5) 

 CONMOD risk = BR2 + IR (6)

Raw risk values derived from these equations may be 
scaled between 0 and 1 or classified directly into risk classes 
using the methodology as suggested by Salas and Chuvieco 
(1994, Table III); both methods are used here.

Logistic Regression Modelling of Land Cover Change
Logistic regression has frequently been used to statistically 

model land cover changes (e.g. Turner et al. 1996, Wear et al. 
1998, Carmel et al. 2001). Logistic regression is particularly 
suited to modelling land cover change because of its suitability 
to predict a categorical (nominal) dependent variable from 
both continuous and categorical independent variables (e.g. 
see Hosmer and Lemeshow 1989), as was the nature of the 
independent data used here. The Multionomial Logit Model 
(MNLM, Equation 7) is used here as a probability model to 
estimate future land cover given a suite of 12 predictor vari-
ables (as shown in Table 4). The MNLM gives the probability 
of a pixel being in a state y

i
 from:

(7)

where: x = predictor variable

m = land cover (e.g. cropland, scrubland)

J = total number of land cover types

β = estimated model parameter

To overcome the problems associated with spatial au-
tocorrelation of data used in multiple regression analyses 
(see  Lennon 2000), data was sampled at every tenth pixel in 
the x and y  directions, as spatial autocorrelation was found 
to decrease monotonically above a lag of eight map pixels 
(~240m). Model coefficients were then estimated using the 
resulting 8,855 pixels for the land cover change observed 
between 1984 and 1999. These model coefficients where 
then used to predict land cover of the landscape in 2014, by 
applying the model coefficients to the data for 1999. The 
resulting map was smoothed using a Moore neighbourhood 
modal filter, as this had previously been found by the author 
to improve model accuracy (for models predicting observed 
land cover). The resulting predicted land cover map of the 
study area for the year 2014 is shown in Figure 2. 

Table 3. Classification of risk values. Final risk classes were derived as shown 
(source: Salas and Chuvieco 1994). For example, a pixel classed ‘High’ in BR 
and ‘Medium’ in IR has a final Wildfire Risk of ‘High’. BR and IR values were 
classified using the following method; ‘Low’: risk value below ‘Medium’ range, 
‘Medium’: risk values within one standard deviation greater or less than the 
mean risk value of the map (BR or IR), ‘High’: risk value within one standard 
deviation greater than the greatest ‘Medium’ risk value; ‘Very High’ all greater 
risk values.

Behaviour Risk

Ignition Risk Very High High Medium Low

Very High Very High Very High Medium Medium

High Very High High Medium Medium

Medium High High Medium Low

Low Medium Medium Low Low
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Model Results

Non-spatial Results
Both models suggest that mean wildfire risk has increased 

during the observed period (1984-1999) and will continue to 
increase into the future (see Figure 3). Further, risk is shown 
to become less variable through time (indicated by decreases 
in both standard deviation and the coefficient of variation, 
CV; see Figure 3). SACMOD suggests mean risk will increase 
by ~11% and ~18% for 1984-1999 and 1984-2014 respec-
tively. CONMOD suggests mean risk will increase by ~12% 
and ~23% between the same periods. Thus, through time the 
proportion of risk values in the interval 0.4 – 0.6 increases, 
while the proportion of pixels at lower values decreases (see 
Figure 4).

SACMOD shows some increase in the ‘Very High’ class 
(~17%) in the observed period, but over the total period 
1984-2014 the proportion of SPA 56 in this highest class will 
decrease by ~19% (Figure. 5). Examination of the SACMOD 

results shows that increases are found predominantly through 
the middle of the risk range (‘Medium’ and ‘High’ classes), 
and that pixels with ‘Low’ risk decrease in abundance for all 
time periods. In contrast, CONMOD shows marked (relative) 
increases in the ‘Very High’ and ‘High’ classes (~49% and 
~53% respectively for 1984-1999 and ~73% and ~174% 
respectively for 1984-2014). No change was found in the 
proportion of the landscape defined as being at ‘Medium’ risk 
across the observed time period (-0.3% for 1984-1999) but a 
decrease of ~20% was predicted across the period 1984-2014. 
Thus, there is a marked difference between the two models 
for all observed and predicted time periods in each risk class 
except the ‘Low’ class. CONMOD indicates the proportion of the 
landscape at ‘Medium’ risk will remain largely constant (or 
decrease) but that the proportion of ‘High’ and ‘Very High’ 
will increase. Conversely, SACMOD indicates the proportion of 
the landscape at ‘Very High’ risk will remain largely constant 
(or decrease) but that the proportion of ‘Medium’ and ‘High’ 
risk will increase. 

Table 4. Predictor variables used for multinomial logistic model. Units and resolu-
tion of measurement are shown. Values in brackets are years of measurement. See 
Romero-Calcerrada (2000) for details regarding ‘Land Capability’ measure.

Predictor Variable Unit of Measurement Resolution

Agricultural workers (1996) Percentage of population Municipality

Mean farmer age (1999) Years Municipality

Migration (1999) Number of persons Municipality

Population density (1999) Persons/km2 Municipality

Vegetation cover (1999) Cover, see Figure 2 30m pixel

Aspect
Classified: N/NE/E/SE/S/SW/

W/NW
30m pixel

Distance to a road Metres 30m pixel

Distance to a water body Metres 30m pixel

Distance to an urban area Metres 30m pixel

Distance to edge of patch Metres 30m pixel

Land capability Ranked 30m pixel

Mean annual temperature °C 30m pixel

Figure 3. Mean risk for SACMOD and CONMOD by year. Mean wildfire risk increases 
and risk variability decreases with time. Error bars represent 1 S.D. Risk values 
are based on the raw, unclassified, risk values from equations 5 and 6.

Figure 4. Wildfire risk distributions for SACMOD (left) and CONMOD (RIGHT) to 
year. Distributions for both models show risk increases and becomes less vari-
able over time. Risk values are based on the raw, unclassified, risk values from 
equations 5 and 6.

Figure 5. Wildfire risk class landscape proportions by year. SACMOD shows increas-
ing landscape proportion in the ‘Medium’ and ‘High’ risk classes. CONMOD shows 
increasing landscape proportion in the ‘High’ and ‘Very High’ risk classes, but 
decreases in the ‘Medium’ risk class.

sacmod conmod
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Spatial Change
A suite of spatial indices (Table 5) were calculated at the 

landscape-level for the risk maps produced by the models 
(presented in Figures 6 and 7) using the software ‘Fragstats’ 
(McGarigal and Marks 1995). Of these indices, three (Con-
tagion, Shannon’s Diversity Index and Edge Density) can 
be used to illustrate three distinct differences (with spatial 
and non-spatial aspects) between risk maps produced by the 
models.

First, maps produced by CONMOD were relatively constant 
in their contagion values through time. In contrast SOCMOD 
shows increases through time. This difference is likely related 
to the increased proportions of ‘High’ and ‘Low’ risk pixels 
found in CONMOD compared with SACMOD. On inspecting the 
risk maps (Figures 6 and 7) we observe that the vast expanses 

Table 5. Spatial indices of wildfire risk maps. Differences are observed between the two model’s output in their spatial configuration. CONMOD contagion values are 
constant through time, SOCMOD values increase; CONMOD Shannon’s diversity index values are constant through time, SOCMOD values decrease; and CONMOD edge density 
values are greater than for SOCMOD.

Number of Patches Largest Patch Index Edge Density
Mean Euclidean 

Nearest Neighbour
Contagion

Shannon’s Diversity 

Index

SACMOD 1984 12,181 57.05 111.42 99.82 46.67 0.95

SACMOD 1991 11,917 62.80 105.39 101.87 48.71 0.91

SACMOD 1999 11,848 64.85 105.01 102.24 50.26 0.88

SACMOD 2014 9,337 69.35 82.57 112.42 59.16 0.73

CONMOD 1984 12,262 55.89 111.33 100.79 46.22 0.96

CONMOD 1991 12,272 57.09 112.29 102.23 45.24 0.98

CONMOD 1999 12,961 56.49 115.30 101.94 45.66 0.96

CONMOD 2014 11594 12.62 96.44 118.72 49.43 0.92

Figure 6. Wildfire risk maps produced by SACMOD. Through time the proportion ‘Medium’ risk increases, shown as the landscape becomes dominated by large homog-
enous light blue areas. Areas at greatest risk are shown in bright red.

of ‘Medium’ risk pixels found in SACMOD are more fragmented 
by patches of ‘Low’ or ‘High’ risk in the CONMOD maps. This 
difference may be attributed to the consideration of the spatial 
nature of wildfire risk in CONMOD via the contiguity index. 
Second, decreases in Shannon’s Diversity Index (SDI) are 
observed in maps produced using SACMOD, but remain constant 
in maps produced using CONMOD. SDI is calculated by con-
sidering the relative proportions of the classes that make up a 
landscape. As described above, the results from SACMOD show 
an increasing dominance of the ‘Medium’ risk class through 
time (Figure 5) but CONMOD results indicate the proportion of 
‘Medium’ risk pixels remains constant. Further, the four risk 
classes contribute much more evenly in the CONMOD map for 
2014 (Figures 5 and 7). Thus, SDI decreases for SACMOD but 
remains relatively stable for CONMOD maps. Third, edge den-
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sity values prove to be greater for CONMOD and SACMOD. This 
is due to the more spatially heterogeneous and patchy nature 
of these maps (also shown by greater patch numbers in the 
CONMOD maps), likely due to the inclusion of the contiguity 
index. Contiguity was calculated at the patch-level and so 
introduces a further hierarchical level (grain) by which to 
distinguish areas of differing wildfire risk.

Discussion

Generally, wildfire risk, as estimated here, has been shown 
to increase during the observed period (1984-1999) across 
SPA 56. The use of a logistic regression model of land cover 
change suggests that if the observed land cover changes 
continue, wildfire risk will continue to rise across SPA 56 
as a whole. Furthermore, decreases in the CV of risk values 
suggest a decreasing spatial variability of risk in the landscape 
(in terms of the range of risk values). Romero-Calcerrada and 
Perry (2004) suggested that the observed changes in SPA 56 
might increase wildfire risk due to increases in highly flam-
mable fuels and spatial homogenisation of the landscape. The 
findings here support this view. Increases (both observed and 
predicted) in shrubland cover, commensurate with decreases 
in pasture, have resulted in increased wildfire risk. 

The importance of increasing homogeneity in the land-
scape, and the consideration of landscape pattern in general 
in wildfire risk models of this type, is highlighted when 
the results of the two models are compared. CONMOD shows 
marked increases in the higher risk classes compared to SAC-
MOD, suggesting that consideration of the spatial pattern does 
modify wildfire risk assessment. These changes are consist-
ent with theory, i.e. that increasing landscape homogeneity 

increases wildfire risk. CONMOD is an improvement on SACMOD 
as it decreases the homogeneity of risk classes across the 
landscape, emphasising differences in risk between areas more 
clearly. In risk terms, this means putting greater emphasis on 
the upper risk classes (‘High and ‘Very High’) compared to 
the ‘Medium’ risk class. In spatial terms, this means large 
contiguous areas of the ‘Medium’ risk class across the land-
scape are fragmented by the other risk classes. In both cases 
this allows wildfire and forestry managers to target areas in 
higher wildfire risk more accurately and therefore (hopefully) 
manage the landscape more effectively and efficiently. 

The outcomes of this modelling strongly suggest that there 
is a need for improved consideration of the spatial structure 
of the landscape in models of this type (frequently used by 
risk managers on a daily and weekly basis). If not included, 
changes in the spatial complexity of the configuration of 
landscapes (e.g. homogenisation) cannot be considered. 
More spatially oriented approaches will allow more explicit 
representation of the pattern and process interactions which 
landscape ecologists stress as being of vital importance, es-
pecially in terms of disturbance (Turner 1989). Further, the 
methodology presented here shows that these types of model 
can be used to examine how wildfire risk might change in the 
future as a result of changing environmental conditions, for 
example climatic or land cover change. Convenient measures 
for assessing wildfire hazard, and potential changes in that 
hazard, at larger regional and continental extents have recently 
been called for and explored (e.g. Malamud et al. 2005). The 
approach taken here is not the most mechanistic considera-
tion of the potential changes in processes as a result of these 
types of changes (or interactions between these changes, for 
example changes in vegetation growth rates with changing 
climate, Osborne et al. 2000).  However, it provides a quick 

Figure 7. Wildfire risk maps produced by CONMOD. Through time the proportion of ‘High’ and ‘Very High’ risk increases, shown by the increase in light and bright red 
areas which fragment lower risk areas (shown in blue).
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and simple tool for assessing risk, and is transferable to other 
Mediterranean landscapes. 

Summary

GIS-based models have been used previously to assess 
wildfire risk in Mediterranean environments. Here two such 
models, one used previously (SACMOD, Salas and Chuvieco 
1994) and an extended version of this that considers the 
spatial configuration of the landscape (CONMOD), showed 
that wildfire risk has increased in the study area (SPA 56 
‘Encinares del río Alberche y Cofio’, central Spain). This 
increase is largely due to due to increases in scrubland and 
commensurate decreases in pastureland, allied with increasing 
homogeneity of the landscape driven largely by agricultural 
abandonment (as suggested by Romero-Calcerrada and Perry 
2004). However, the results suggest that CONMOD highlighted 
changes in the spatial structure of the landscape (i.e. increased 
homogeneity) better than SACMOD. Further, both models were 
used to examine potential changes in future wildfire risk 
based on regression model-derived predictions of future land 

cover. The results suggest that wildfire risk will continue to 
increase across the landscape. Finally, it is suggested that a 
methodology such as that used here could be used in other 
Mediterranean landscapes for the rapid assessment of current 
and future wildfire risk.
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